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Abstract. We present a detailed study of the phase diagram of the Ising model in random graphs with
arbitrary degree distribution. By using the replica method we compute exactly the value of the critical
temperature and the associated critical exponents as a function of the moments of the degree distribution.
Two regimes of the degree distribution are of particular interest. In the case of a divergent second moment,
the system is ferromagnetic at all temperatures. In the case of a finite second moment and a divergent
fourth moment, there is a ferromagnetic transition characterized by non-trivial critical exponents. Finally,
if the fourth moment is finite we recover the mean field exponents. These results are analyzed in detail for
power-law distributed random graphs.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.70.Fh Phase transitions: general
studies – 75.10.Nr Spin-glass and other random model – 89.75.Hc Networks and genealogical trees

1 Introduction

The increasing evidence that many physical, biological
and social networks exhibit topological properties differ-
ent from that of random graphs or regular lattices has
led to the investigation of graph models with complex
topological properties [1]. In particular, the existence of
some special nodes of the cluster (hubs) posses a larger
probability to develop connections pointing to other nodes
has been recently identified in scale-free networks [2,3].
These networks exhibit a power law degree distribution
pk ∼ k−γ , where the exponent γ is usually larger than 2.
This kind of degree distribution implies that each node
has a statistically significant probability of having a large
number of connections compared to the average degree of
the network. Examples of such properties can be found in
communication and social webs, along with many biolog-
ical networks, and have led to the developing of several
dynamical models aimed to the description and charac-
terization of scale-free networks [2–5].

Power law degree distributions are the signature of
degree fluctuations that may alter the phase diagram
of physical processes as in the case of random percola-
tion [6,7] and spreading processes [8] that do not exhibit
a phase transition if the degree exponent is γ ≤ 3. In this
perspective, it is interesting to study the ordering dynam-
ics of the Ising model in scale-free networks. The Ising
model is, indeed, the prototypical model for the study of
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phase transitions and complex systems and it is often the
starting point for the developing of models aimed at the
characterization of ordering phenomena. For this reason,
the Ising model and its variations are used to mimic a wide
range of problems not pertaining to physics, such as the
forming and spreading of opinions in societies and com-
panies or the evolution and competition of species. Since
social and biological networks are often characterized by
scale-free properties, the study of the ferromagnetic phase
transition in graphs with arbitrary degree distribution can
find useful application in the study of several complex
interacting systems and it has been recently pursued in
reference [9]. The numerical simulations reported in ref-
erence [9] show that in the case of a degree distribution
with γ = 3 the Ising model has a critical temperature Tc,
characterizing the transition to an ordered phase, which
scales logarithmically with the network size. Therefore, in
the thermodynamic limit, the system is ferromagnetic at
any temperature.

In the present paper we present a detailed analytical
study of the Ising model in graphs with arbitrary degree
distribution. By relaxing the degree homogeneity in the
usual mean field (MF) approach to the Ising model, it is
shown that the existence of a disordered phase is related
to the ratio of the first two moments of the degree dis-
tribution. Motivated by this finding, we apply the replica
calculation method, as developed for spin glasses and di-
luted ferromagnetic models on random graphs [12–18], in
order to find an exact characterization of the transition
to the ordered state and its associated critical behavior.
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We find that a disordered phase is allowed only if the sec-
ond moment of the degree distribution is finite. In the
opposite case, the strong degree of the hubs present in the
network prevails on the thermal fluctuations, imposing a
long-range magnetic order for any finite value of the tem-
perature. Corrections to this picture are found when the
minimal allowed degree is m = 1. The value of the crit-
ical temperature and exponents is found for any degree
exponent γ > 3 and a transition to the usual infinite di-
mensional MF behavior is recovered at γ = 5. Moreover,
in the range 3 < γ ≤ 5 non trivial scaling exponents are
obtained.

During the completion of the present work we become
aware that Dorogovtsev et al. [10] have obtained with a
different approach results which overlap with those re-
ported in the present paper.

2 Mean field approach

Let us consider the Ising model with a ferromagnetic cou-
pling constant on top of a random graph of size N and an
arbitrary degree distribution pk. A spin variable si = ±1
is assigned to each node i while the interactions among dif-
ferent nodes is given by the interaction matrix elements
Jij (Jij = 1 if nodes i and j interact and Jij = 0 other-
wise). The energy of this system is given by

H({si}) = M −
N∑

i>j=1

Jijsisj −H0

∑
i

si, (1)

where M = 〈k〉N/2 and H0 is an external field.
Using a MF approximation it is possible to obtain a

first estimate of the critical temperature and the magneti-
zation taking into account the inhomogeneity of the graph.
Neglecting the spin-spin correlations, 〈sisj〉 ' 〈si〉 〈sj〉 =
〈s〉2, it is then possible to use an effective field ansatz in
which each spin feels the average magnetization on neigh-
boring spins obtaining

HMF = M − 〈s〉
∑
i

kisi, (2)

where ki =
∑
j Jij is the node degree and the external

filed has been set to H0 = 0. In the case of a graph with
homogeneous degree ki = 〈k〉, the average magnetization
is found self-consistently obtaining 〈s〉 = tanh (β 〈k〉 〈s〉)
where β is the inverse temperature in units of k−1

B .
In the case of complex heterogeneous networks, we can

relax the homogeneity assumption on the node’s degree
by defining the average magnetization 〈s〉k for the class of
nodes with degree k. Indeed, the node’s magnetization is
strongly affected by the local degree and the homogeneity
assumption results to be too drastic especially in singular
degree distributions. The self-consistent equation for the
average magnetization in each degree class reads simply
as 〈s〉k = tanh (βk 〈u〉), where 〈u〉 is now the effective field
magnetization seen by each node on the nearest neighbors.
In the calculation of the effective field we have to take

into account the system’s heterogeneity by noticing that
each link points more likely to nodes with higher degree.
In particular the probability that a link points to a node
with degree k is kpk/

∑
l lpl. Thus, the correct average

magnetization seen on a nearest neighbor node is given by

〈u〉 = f(〈u〉) =
∑
k

kpk
〈k〉 tanh (βk 〈u〉) . (3)

Once obtained 〈u〉 it is possible to compute the network
average magnetization as the average over all the degree
classes 〈s〉 =

∑
k pk tanh (βk 〈u〉). A non-zero magnetiza-

tion solution is obtained whenever f ′(0) > 1 and when
f ′(0) = 1 we obtain the critical point that defines

Tc = β−1
c =

〈
k2
〉

〈k〉 · (4)

Hence, when
〈
k2
〉
/ 〈k〉 is finite there is a finite critical

temperature signalling of the transition from the para-
magnetic to a ferro-magnetic state. On the contrary, if〈
k2
〉

is not finite the system is always in the ferromag-
netic state.

3 The replica approach on general random
graphs

In the present section we will refine the mean field picture
via a replica calculation, in the framework of the method
applied in the last years for spin glasses and diluted ferro-
magnetic models on random graphs [13]. We will show how
this method allows to calculate the value and condition for
the existence of the critical temperature. Moreover, these
results recover the MF predictions in the limits where the
latter is applicable.

For a random graph the interaction matrix elements
in equation (1) follow the distribution P (Jij) = (1 −
〈k〉
N )δ(Jij) + 〈k〉

N δ(Jij − 1) with constraints in order to
impose the correct degree distribution that will be in-
troduced along the computation of the logarithm of the
partition function. Following the approach of refer-
ence [15], we compute the free energy of the model with
the replica method, exploiting the identity log 〈Zn〉 =
1 + n 〈logZ〉 + O(n2). The average over the disorder of
Zn is given by

〈Zn〉 =
∑
si

〈
exp

[
−β

n∑
a=1

H({sai })
]〉

(5)

where 〈. . . 〉 is the average over the quenched interaction
elements:

〈A〉 =
1
N

∫ ∏
i<j

dJijP (Jij)
N∏
i=1

δ

∑
j

Jij − ki

 A (6)

N =
∏
i<j

dJijP (Jij)
N∏
i=1

δ

∑
j

Jij − ki

 . (7)
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Notice that the delta functions enforce the constraints on
the connectivities distribution and N is a normalization
factor. To compute the average over {Jij} we write the
constraints in the integral form

δ

∑
j

Jij − ki

 =
∫

dψi
2π

ei(Pj Jij−ki)ψi (8)

resulting that

〈Zn〉 =
e−βnM−M

N
∑
si

∫ ∏
i

(
dψi
2π

e−ikiψi

)

× exp

 〈k〉
2N

∑
ij

eβ
P
a s

a
i s
a
j+i(ψi+ψj) + βH0

∑
i,a

sai

 · (9)

We now introduce a functional order parameter, fol-
lowing the well tested procedure of replica theory of di-
luted systems [13]:

ρ(σ) =
1
N

∑
i

δ(σ − si)eiψi · (10)

Tracing over the spins si, integrating out the ψi variables
and computing the normalization factor N one is left with
the following expression for the replica free energy:

−nβF = −〈k〉
∑
σ

ρ(σ)ρ̂(σ) +
〈k〉
2

(1− nβ)

+
〈k〉
2

∑
σ1,σ2

ρ(σ1)ρ(σ2) exp

(
β
∑
a

σa1σ
a
2

)

+
∑
k

pk log

[∑
σ

(ρ̂(σ))keβH0
P
a σ

a

]
(11)

where ρ̂(σ) is the functional order parameter conjugate to
ρ(σ). The main contribution to the free energy in the ther-
modynamic limit is evaluated via the following functional
saddle point equations:

ρ(σ) =
∑
k

kpk
〈k〉

(ρ̂(σ))k−1eβH0
P
a σ

a∑
σ(ρ̂(σ))keβH0

P
a σ

a (12)

ρ̂(σ) =
∑
σ1

ρ(σ1) exp

(
β
∑
a

σaσa1

)
. (13)

It is easy to show that the order parameters can be taken
as normalized in the n → 0 limit. Further normalization
factors cancel out in the expression for the free energy.

3.1 Solution of the saddle point equations

Being the system a diluted ferromagnet the replica sym-
metric (RS) ansatz is sufficient to find the correct solution

of (12) and (13) at every temperature [13]. In the general
case we can write:

ρ(σ) =
∫

dhP (h)
eβh
Pn
a=1 σa

(2 cosh(βh))n
(14)

ρ̂(σ) =
∫

duQ(u)
eβu
Pn
a=1 σa

(2 cosh(βu))n
(15)

that leads to

P (h) =
∑
k

kpk
〈k〉

∫ k−1∏
t=1

dutQ(ut)δ

(
h−

∑
t

ut −H0

)
(16)

Q(u) =
∫

dhP (h)δ
[
u− 1

β
tanh−1(tanh(β) tanh(βh))

]
(17)

where P (h) is the average probability distribution of ef-
fective fields acting on the sites and Q(u) is that of cavity
fields. We would like to stress that the strong inhomo-
geneities present in the graph are correctly taken into ac-
count and handled via the computation of the whole prob-
ability distributions. In the Ising case we can easily work
only with the cavity fields, whose self consistent equation
for the Q(u) reads:

Q(u) =
∑
k

kpk
〈k〉

∫ k−1∏
t=1

dutQ(ut)δ

{
u− 1

β
tanh−1

×
[

tanh(β) tanh

(
β
k−1∑
t

ut + βH0

)]}
· (18)

This is an integral equation that can be solved at every
value of β using a population dynamics algorithm such as
the RS simple version of that proposed in [14]. Moreover,
plugging equations (14) and (15) into (11) we obtain the
following expression for the free energy

βF = 〈k〉
∫

dhduP (h)Q(u) log [1 + tanh(βh) tanh(βu)]

− 〈k〉
2

∫ 2∏
t=1

dhtP (ht) log

[
1 + tanh(β)

2∏
t=1

tanh(βht)

]

−
∑
k

pk

∫ k∏
t=1

dutQ(ut) log
(

2 cosh(β
∑
t ut + βH0)∏

t 2 cosh(βut)

)
− 〈k〉 log(2) +

〈k〉
2

[β − log(cosh(β))] · (19)

Then using equations (18, 19) we can compute the differ-
ent thermodynamic quantities. For instance, the average
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cavity field and magnetization are given by

〈u〉 =
∫

duQ(u)u =
∑
k

kpk
〈k〉

∫ k−1∏
t=1

dutQ(ut)

× 1
β

tanh−1

[
tanh(β) tanh

(
β
k−1∑
t

ut + βH0

)]
(20)

〈s〉 = − ∂F

∂H0
=
∑
k

pk

∫ k∏
t=1

dutQ(ut)

× tanh

(
β

k∑
t

ut + βH0

)
. (21)

On the other hand, the internal energy and the specific
heat at the saddle point can be calculated from equa-
tion (19) through the relations 〈E〉 = β ∂βF∂β and C =
d 〈E〉 /dT and further exploiting (12) and (13).

3.2 Ferromagnetic phase transition

At T = 0 and in the limit of non vanishing fields (u and h
∼ O(1)) it is straightforward to see that the cavity fields
can take only 0 or 1 values, i.e. Q(u) = q0δ(u) + (1 −
q0)δ(u − 1). Plugging this ansatz into equations (18, 20)
and (21) one obtains that 〈u〉 = 1− q0,

〈s〉 = 1−G0(q0), (22)
q0 = G1 (q0) , (23)

where

G0(x) =
∑
k

pk x
k,

G1(x) =
∑
k

kpk
〈k〉 x

k−1, (24)

are the generating functions of the degree distributions of
a vertex chosen at random and a vertex arrived following
an edge chosen at random [21], respectively. We point out
that these equations correctly coincides with that obtained
in the problem of percolation in a random graph with an
arbitrary degree distribution [20,21], where the average
magnetization 〈s〉 is just the size of the giant component.
Moreover, these expressions can be easily generalized to
higher order hypergraphs as it has been done in [15–17].
From equation (22) it follows that there is a finite magne-
tization whenever the solution q0 of equation (23) is less
than 1. This happens whenever〈

k2
〉

〈k〉 ≥ 2, (25)

that is just the condition for percolation in a random
graph [20,21]. On the contrary, for

〈
k2
〉
/ 〈k〉 < 2 the

magnetization (the size of giant component) is 0, i.e. the
system is in a paramagnetic state.

For random graphs satisfying the percolation condition
in equation (25) we are now interested in finding the value
of βc for the ferromagnetic transition. In the general case
we can derive both sides of equation (20) in u = 0 self
consistently, obtaining

1
Tc

= βc = −1
2

log
(

1− 2
〈k〉
〈k2〉

)
. (26)

In the limit
〈
k2
〉
� 2 〈k〉 we can expand the logarithm

getting the first order condition Tc =
〈
k2
〉
/ 〈k〉 which is

the value found in the naive mean field approximation (4).
Hence, the MF approach in developed in the previous sec-
tion is valid for

〈
k2
〉
� 2 〈k〉 and, in this case, it gives the

same results as those obtained using the replica approach.

3.3 Critical behavior around βc

The critical behavior of the thermodynamical quanti-
ties 〈s〉, χ, and δC close to βc and of 〈s〉 at β = βc
can be calculated without having to explicitly solve the
self consistent equations for the whole probability distri-
bution Q(u). Sufficiently close to the critical point we can
assume Q(u) ∼ δ(u− 〈u〉) being 〈u〉 infinitesimal. In fact
this ansatz is incorrect if β > βc, because it correctly
takes into account the connectivity distribution but dis-
regards the non trivial structure of the Q(u) , which does
not merely translate from the critical form δ(u) at βc, but
immediately develops a continuum structure. In the zero
temperature limit the continuum shape will again collapse
in a distribution of delta peaks discussed above. Neverthe-
less, sufficiently close to the transition we can expect only
the first momenta of the Q(u) to be relevant. For distri-
butions with

〈
k4
〉

finite one is left with a closed system of
equations for the first three momenta all contributing to
the same leading order. Defining µn = 〈k(k − 1)...(k − n)〉
and A = ((tanh(β))2µ2)/(β2 〈k〉 − (tanh(β))2µ1) it fol-
lows that

〈u〉 =
tanh(β)
tanh(βc)

〈u〉 − β2 tanh(β)[1− (tanh(β)]2

3 〈k〉
×
[
µ1

〈
u3
〉

+ 3µ2 〈u〉
〈
u2
〉

+ µ3 〈u〉3
]

〈
u2
〉

= A 〈u〉2〈
u3
〉

=
(

(tanh(β))3Aµ2 + µ3

β3 〈k〉 − (tanh(β))3 < µ1

)
〈u〉3 ·

(27)

Similar calculations can be done for the free energy, the
energy and the specific heat. The same equations are also
found for

〈
k4
〉

= ∞, where the calculation is a bit more
involved because the leading momenta are to be found via
an analytic continuation in the values of their order. The
corrections to the leading momenta are important to com-
pute the the amplitudes in the scaling relations, because
more terms at the same leading order are present, as we
see in equation (27). Since we are not interested in the
calculation of the amplitudes we can therefore resort to
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the variational ansatz Q(u) ∼ δ(u − 〈u〉) in the proxim-
ity of the transition. However we would like to stress that
calculations can be done also in the general case. Equa-
tions (20, 21) for the means then become

〈u〉 ∼
∑
k

kpk
〈k〉

1
β

tanh−1[tanh(β) tanh(β(k − 1) 〈u〉+βH0)]

(28)

〈s〉 ∼
∑
k

pk tanh(βk 〈u〉+ βH0). (29)

The corresponding expressions for the free energy, the en-
ergy and the specific heat can be retrieved in the same
way and will not be written here for the sake of space. If〈
k4
〉

is finite the first non trivial term of the power se-
ries expansion of equation (28) that still gives an analytic
contribution is simply 〈u〉3. One finds

〈u〉 ∼
(

3 〈k〉
β2
c (tanh βc) 〈k(k − 1)3〉

) 1
2

τ
1
2 (30)

〈s〉 ∼ 〈u〉 , χ ∼ τ−1, 〈s〉 ∼ H1/3
0 (31)

where τ = 1 − T/Tc is the reduced control parameter.
All exponents are the usual mean field ones. However, one
finds a finite jump in the specific heat. The transition is
therefore first order in the traditional sense. If we keep all
the relevant momenta in our calculation, we find the ex-
pected correction to the amplitudes. For example we find
〈u〉 ∼

√
3((βc tanh(βc) 〈k〉)((µ1 + 3µ2)A + µ3 >))−

1
2 τ

1
2 .

This equation reduces to (30) if we disregard higher mo-
menta.

4 Power law distributed graphs

In the following we are mostly interested in the case of a
power law distribution of the type

pk = c k−γ , m ≤ k <∞, (32)

where c is a normalization constant and m is the lowest
degree. Note that in the case of a power law distribution

〈
k2
〉

= c
kmax∑
k=m

k2−γ > c m
kmax∑
k=m

k1−γ = m 〈k〉 · (33)

Hence, we have that for m ≥ 2 the graph is always per-
colating for all γ independently on the cutoff kmax. Then
for m ≥ 2 the critical temperature is always given by
equation (26). However, for m = 1 there is a critical
value γ? beyond which the graph is no longer percolat-
ing [19]. γ? is the solution of the equation

〈
k2
〉

= 2 〈k〉
resulting γ? = 3.47875.... If γ ≥ γ? the system is always
paramagnetic while for γ < γ? there is a transition to a fer-
romagnetic state at a temperature given by equation (26).
In Figure 1 we show the phase diagram together with the

2 3 4 5
γ

0

5

10

15

T

Paramagnetic

Ferromagnetic

Fig. 1. The phase diagram of the Ising model on scale-free
graphs with a power law degree distribution pk = ck−γ , m ≤
k <∞. The ferromagnetic transition lines depends on the value
of m, with m = 1 circles, 2 squares, and 3 diamonds.

critical lines for m = 1, 2 and 3. For γ > 5 the fourth mo-
ment

〈
k4
〉

is finite and therefore we recover the usual MF
exponents obtained in the previous section. In the next
section we investigate the critical behavior for γ < 5.

4.1 Degree exponent 2 < γ ≤ 3

For 2 < γ ≤ 3 the second moment of the degree distri-
bution diverges and, therefore, as discussed in previous
sections, the system is always in a ferromagnetic state.
In this case it is important to investigate the behavior
of 〈u〉 and 〈s〉 when β → 0. This computation can be
done using either the mean-field or the replica approach
obtaining the same results. In fact, in this case we have
limβ→0Q(u) = δ(u) and putting this limit distribution
into the self consistent equation for 〈u〉 and 〈s〉 we re-
cover the mean field asymptotic behavior. For 2 < γ ≤ 3
the sums in equation (3) are dominated by the large k re-
gion and, therefore, they can be approximated by integrals
resulting

〈u〉 ≈ (γ − 2)(mβ 〈u〉)γ−2

∫ ∞
mβ〈u〉

dxx1−γ tanhx, (34)

while the magnetization, 〈s〉 =
∑
k pk tanh (βk 〈u〉), is

simply given by

〈s〉 ≈ γ − 1
γ − 2

mβ 〈u〉 · (35)

For γ = 3 the integral in the rhs of equation (34) is dom-
inated by the small x behavior. Thus, approximating the
tanhx by x and computing 〈u〉 we obtain

〈u〉 ≈ exp(−1/mβ)
mβ

, γ = 3. (36)
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Table 1. Asymptotic behavior of different thermodynamic
quantities in the limit T → ∞ for scale free networks with
2 < γ ≤ 3.

2 < γ < 3 γ = 3

δC (1/T )(γ−1)/(3−γ) T 2e−2T/m

〈s〉 (m/T )1/(3−γ) e−T/m

χ 1/Tm2 T/m2

On the other hand, for γ < 3 the integral in the rhs of
equation (34) is finite for any value of mβ 〈u〉 and, there-
fore, for mβ 〈u〉 � 1 it follows that

〈u〉 ≈ [(γ − 2)I]
1

3−γ (mβ)
γ−2
3−γ , γ < 3, (37)

where I =
∫∞

0
dxx1−γ tanhx. Finally, substituting equa-

tions (36, 37) in equation (35) we obtain the asymptotic
behavior of 〈s〉. With the same technique one can study
the behavior of the other thermodynamic quantities ob-
taining the asymptotic behaviors shown in Table 1.

The limiting case γ = 3 corresponds with the Barabasi-
Albert model studied in [9] by means of numerical simu-
lations. The magnetization exhibits an exponential decay
in agreement with our calculation (see Tab. 1). Moreover,
the critical temperature was observed to increase logarith-
mically with the network size N . Computing Tc in equa-
tion (4) for γ = 3 we obtain Tc ≈ (m/2) lnN , which is
in very good agreement with their numerical results. It is
worth remarking that similar exponential and logarithmic
dependencies have been observed for the order and control
parameter in some non-equilibrium transitions [8,11].

4.2 Degree exponent 3 < γ ≤ 5

In this case
〈
k2
〉

is finite and, therefore, there is a ferro-
magnetic transition temperature given by equation (26).
However,

〈
k4
〉

is not finite and the derivation of the MF
critical exponents performed in Section 3.3 is not valid.
In order to find the critical exponents we can write the
functions inside the connectivities sums as power series
in 〈u〉. The coefficients of the two series will depend on
the higher momenta of the connectivity distribution and
will be infinite beyond a certain power of 〈u〉. This is di-
rect consequence of the fact that the power expansion of
the tanh(y) around 0 is convergent as long as the y < π/2,
while for any 〈u〉 in our cases there will exist an k? such
that y = β(k?−1) 〈u〉+βH0 lays outside the convergence
radius. Nevertheless, the function is well approximated by
the expansion when one truncates it up to the maximum
analytical value of the exponent such that all momenta
of the power law distribution taken into consideration are
finite.

For 3 < γ < 5 the highest analytical exponent of the
expansion of equation (28) in powers of 〈u〉 is nmax = γ−2,
where the integer value has been analytically continued
and so should be done with the corresponding series co-
efficient. In this range of γ, nmax is lower than 3 and,

Table 2. Scaling of different thermodynamic quantities near
the critical point τ � 1. ? indicates the presence of logarithmic
corrections given in the text.

3 < γ < 5 γ = 5 γ > 5

δC ∼ τα α 5−γ
γ−3

1
− log τ

1st order

〈s〉τ ∼ τβ β 1
γ−3

1
2

?
1/2

χ ∼ τ−γ γ 1 1 1

〈s〉H0
∼ H1/δ

0 δ γ − 2 3? 3

therefore, it should be taken as the correct value instead
of n = 3 that leads to non analicities. With analogous cal-
culations we are able to find all other critical exponents
(see Tab. 2). On the other hand, for γ = 5 one can find
a logarithmic correction to the previous values expand-
ing the inverse hyperbolic tangent in equation (28) to the
third order in the tails of the degree distribution. The
results are shown in Table 2. The specific heat is contin-
uous at the critical point indicating a phase transition of
order larger than 1. Moreover, a part from the logarith-
mic corrections in the γ = 5 case, the universality rela-
tions between the exponents are satisfied. We point out
that non-trivial exponents have been also obtained in the
problem of percolation in a power law random graph with
3 < γ ≤ 5 [22].

It is also interesting to analyze how these results are
affected if there is a cutoff in the degree distribution, due
to finite size effects for instance. In this case

〈
k4
〉

is finite
and, therefore, we should recover the MF exponents ob-
tained in the previous section. However the influence of
non trivial terms is very strong and thus equation (30)
is only valid in a very narrow region around Tc. The nu-
merical values of Tc and of the amplitudes in the critical
behavior of the magnetization are also strongly affected
because they depend on moments of the connectivities dis-
tribution. In the infinite cutoff limit the mean field window
shrinks to zero and one recovers the non trivial behavior.
Indeed, if we work with a large enough cutoff and compute
the average magnetization for β(k− 1) 〈u〉 (β) ∼ π/2 then
we see a contribution in the magnetization that goes as
(β − βc)1/(γ−3). This region becomes dominant for large
values of the cutoff.

5 Summary and conclusions

In summary, we have obtained the phase diagram of the
Ising model on a random graph with an arbitrary degree
distribution. Three different regimes are observed depend-
ing on the moments

〈
k2
〉

and
〈
k4
〉

of the distribution.
For

〈
k4
〉

finite the critical exponents of the ferromagnetic
phase transition coincides with those obtained from the
simple MF theory. On the contrary, for

〈
k4
〉

not finite
but

〈
k2
〉

finite we found non-trivial exponents that de-
pend on the power law exponent of the degree distribu-
tion γ. Finally, for

〈
k2
〉

not finite the system is always in
a ferromagnetic state.
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